Software application is one of the most routine activities spread across organizations, and its use has only increased over the years. The development of software is a complex and difficult task, with the process requiring ideation, product definition, coding, strategic designing, quality assessment, and more. If there are any mistakes made during these steps, it could mean the entire process needs to be restarted.
Because of these challenges, many of today’s best organizations turn to artificial intelligence (AI) and machine learning (ML) to achieve better outcomes.
Here are the 7 best AI software development tools:
Topping our list of 7 best AI software development tools is the Google Cloud AI Platform, which helps you train your machine learning models at scale, host your trained model in the cloud, and use your model to make predictions about new data.
The integrated toolchain provided by the platform expedites the development and deployment of machine learning projects, and you can build portable ML pipelines with Kubeflow, an open-source platform from Google. The AI platform enables you to deploy your machine learning project both on-premise or in the cloud, and there are various options to store data, such as cloud storage and BigQuery.
Another one of the main offerings of AI Platform is pre-configured Virtual Machines (VMs), which help develop deep learning applications, and it also has natural language processing (NLP) capabilities that help determine the meaning and structure of text. Besides these, you can use the platform’s APIs for speech-to-text and text-to-speech capabilities, as well as vision capabilities to extract insights from images.
Here are some of the main features of the Google Cloud AI Platform:
Another top option for AI software development tools is the Microsoft Azure AI Platform, which has been trending in the development market. A robust cloud platform, there are many organizations that rely on it. The platform has many great capabilities, such as object recognition, unsupervised machine learning, speech recognition, and more.
The Microsoft Azure AI Platform has made it easier for organizations to carry out AI development, and it offers various customization options like domain-specific pre-trained AI models for text, face, and speech recognition. It also offers various machine learning capabilities like Azure ML, a Python-based automated ML service; Azure Databricks, an Apache Spark-based big data service; and ONNX, an open-source model format and runtime for ML.
Here are some of the main features of the Microsoft Azure AI Platform:
Another one of the most well-known AI tools for software development is IBM Watson, which is equipped with advanced AI capabilities including conversation interfaces, mobile app APIs, conversation interfaces, and NLP services.
IBM Watson’s robust software development tools have been deployed throughout many different industries like oil and gas, media and entertainment, financial services, Internet of Things (IoT), and much more.
The platform also offers AI development services that help developers build apps with pre-trained AI capabilities. Some of its other features include Watson Assistant, which can be integrated to build AI-powered conversational interfaces into your app, and its NLP service in the form of Watson Natural Language Understanding (NLU).
Here are some of the main features of IBM Watson:
H20 is an open-source, machine learning platform that has been steadily rising in popularity. It is a powerful AI software development tool that offers a wide range of features like smart machine learning algorithms, statistical and generalized linear models, deep learning models, and more. The tool also supports big data, Hadoop, and Spark/Kubernetes clusters.
H20, which allows you to use programming languages like R and Python to build models, is often used for data analysis, fraud detection, risk management, digital healthcare, and customer intelligence.
Here are some of the main features of H20:
No list for AI software development tools would be complete without TensorFlow, which is an open-source, numeric computational tool and machine learning library. TensorFlow is primarily used for development and research purposes, and it is flexible while offering comprehensive tools and libraries that help accelerate AI development.
Businesses can use TensorFlow to develop and train smart ML and AI-powered applications that handle complex operations including forecasting, contract management, legal operations, customer services, and more.
Here are some of the main features of TensorFlow:
MxNet is a leading and popular AI software development tool that is a deep learning framework often used in research and production. MxNet helps enhance AI development with advanced natural language processing capabilities, and it offers distributed training models to scale AI applications.
The tool is often used in Multi-GPU and multi-machine training, as well as in writing custom layers in high-level languages.
Here are some of the main features of MxNet:
Closing out our list of 7 best AI software development tools is Infosys Nia, which is another great tool that enables you to build powerful AI-powered apps. One of the best capabilities offered by the tool is Nia Advanced ML, which offers a wide range of machine learning algorithms that operate at speed and scale, helping build high-performing ML models.
The tool also enables you to build AI-powered chatbots, with your app providing access to the enterprise knowledge repository. The app can also automate actions with a conversational interface and integrate Nia data, which is a robust analytics solution.
Here are some of the main features of Infosys Nia: